Our R&D team is home to an impressive constellation of scientists drawn from a wide array of disciplines. As experts in their field, our people regularly publish their work in prestigious journals. We also engage with the wider scientific community to conduct research and co-author papers. See below the list of publications by our people:
1. Phase III Pivotal comparative clinical trial of intranasal (iNCOVACC) and intramuscular COVID 19 vaccine (Covaxin®) Click Here
1. Ella R, Vadrevu KM, Jogdand H, Prasad S, Reddy S, Sarangi V, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: a double-blind, randomised, phase 1 trial. Lancet Infect Dis. 2021 Jan 21; Click Here
2. Ella R, Reddy S, Jogdand H, Sarangi V, Ganneru B, Prasad S, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: interim results from a double-blind, randomised, multicentre, phase 2 trial, and 3-month follow-up of a double-blind, randomised phase 1 trial. Lancet Infect Dis. 2021 Jul;21(7):950-61. Click Here
3. Ella R, Reddy S, Blackwelder W, Potdar V, Yadav P, Sarangi V, Aileni VK, Kanungo S, Ella R, Reddy S, Blackwelder W, Potdar V, Yadav P, Sarangi V, et al. Efficacy, safety, and lot-to-lot immunogenicity of an inactivated SARS-CoV-2 vaccine (BBV152): interim results of a randomised, double-blind, controlled, phase 3 trial. Lancet. 2021;398(10317):2173-84. Click Here
4. Ganneru B, Jogdand H, Daram VK, Das D, Molugu NR, Prasad SD, et al. Th1 Skewed immune response of Whole Virion Inactivated SARS CoV 2 Vaccine and its safety evaluation. iScience. 2021 Mar;102298. Click Here
5. Mohandas S, Yadav PD, Shete-Aich A, Abraham P, Vadrevu KM, Sapkal G, et al. Immunogenicity and protective efficacy of BBV152, whole virion inactivated SARS- CoV-2 vaccine candidates in the Syrian hamster model. iScience. 2021 Feb;24(2):102054. Click Here
6. Yadav PD, Ella R, Kumar S, Patil DR, Mohandas S, Shete AM, et al. Immunogenicity and protective efficacy of inactivated SARS-CoV-2 vaccine candidate, BBV152 in rhesus macaques. Nat Comm. 2021 Mar 2;12:1386. Click Here
7. Immunogenicity and safety of an inactivated SARS-CoV-2 vaccine (BBV152) in children from 2 to 18 years of age: an open-label, age-de-escalation phase 2/3 study | medRxiv [Internet]. [cited 2022 Jan 19]. Click Here
8. Sapkal GN, Yadav PD, Ella R, Deshpande GR, Sahay RR, Gupta N, et al. Inactivated COVID-19 vaccine BBV152/COVAXIN effectively neutralizes recently emerged B.1.1.7 variant of SARS-CoV-2. Journal of Travel Medicine. 2021 Jun 1;28(4):taab051 Click Here
9. Yadav PD, Sapkal GN, Ella R, Sahay RR, Nyayanit DA, Patil DY, et al. Neutralization of Beta and Delta variant with sera of COVID-19 recovered cases and vaccinees of inactivated COVID-19 vaccine BBV152/Covaxin. Journal of Travel Medicine. 2021 Oct 11;28(7):taab104. Click Here
10. Sapkal GN, Yadav PD, Ella R, Deshpande GR, Sahay RR, Gupta N, et al. Neutralization of UK-variant VUI-202012/01 with COVAXIN vaccinated human serum [Internet]. Microbiology; 2021 Jan [cited 2022 Feb 25]. Click Here
11. Yadav PD, Sapkal GN, Abraham P, Ella R, Deshpande G, Patil DY, et al. Neutralization of Variant Under Investigation B.1.617.1 With Sera of BBV152 Vaccinees. Clinical Infectious Diseases. 2022 Jan 15;74(2):366-8. Click Here
12. Sapkal G, Yadav PD, Ella R, Abraham P, Patil DY, Gupta N, et al. Neutralization of VUI B.1.1.28 P2 variant with sera of COVID-19 recovered cases and recipients of Covaxin an inactivated COVID-19 vaccine. Journal of Travel Medicine. 2021 Oct 11;28(7):taab077. Click Here
13. Vadrevu KM, Ganneru B, Reddy S, Jogdand H, Raju D, Praturi U, et al. Persistence of immunity and impact of a third (booster) dose of an inactivated SARS-CoV-2 vaccine, BBV152; a phase 2, double-blind, randomised controlled trial [Internet]. Infectious Diseases (except HIV/AIDS); 2022 Jan [cited 2022 Feb 25]. Click Here
14. Protective efficacy of COVAXIN® against Delta and Omicron variants in hamster model. iScience. 2022 Oct 21;25(10):105178. Epub 2022 Sep 22. PMID: 36164480; PMCID: PMC9493142. Click Here
15. Host immune responses in aged rhesus macaques against BBV152, an inactivated SARS-CoV-2 vaccine, and cross-neutralization with beta and delta variants. Frontiers in Immunology. 2023. Click Here
16. Neutralization against B.1.351 and B.1.617.2 with sera of COVID-19 recovered cases and vaccinees of BBV152 Neutralization of South Africa Variant (B.1.351) and Delta Variant (B.1.617.2) Click Here
17. Booster dose of the inactivated COVID-19 vaccine BBV152 (Covaxin) enhances the neutralizing antibody response against alpha, Beta, Delta and omicron variants of concern. J Travel Med. 2022 Mar 24:taac039. doi: 10.1093/jtm/taac039. Epub ahead of print. PMID: 35325176. Click Here
1. Singh AK, Phatak SR, Singh R, Bhattacharjee K, Singh NK, Gupta A, et al. Antibody response after first and second-dose of ChAdOx1-nCOV (CovishieldTM®) and BBV-152 (CovaxinTM®) among health care workers in India: The final results of cross-sectional coronavirus vaccine-induced antibody titre (COVAT) study. Vaccine. 2021 Oct 22;39(44):6492-509. Click Here
2. Dash GC, Subhadra S, Turuk J, Parai D, Rath S, Sabat J, et al. Breakthrough SARS‐CoV‐2 infections among BBV‐152 (COVAXIN®) and AZD1222 (COVISHIELDTM) recipients: Report from the eastern state of India. J Med Virol. 2021 Oct 13;10.1002/jmv.27382. Click Here
3. Yadav PD, Sahay RR, Sapkal G, Nyayanit D, Shete AM, Deshpande G, et al. Comparable neutralization of SARS-CoV-2 Delta AY.1 and Delta with individuals sera vaccinated with BBV152. J Travel Med. 2021 Sep 28;taab154. Click Here
4. Desai D, Khan AR, Soneja M, Mittal A, Naik S, Kodan P, et al. Effectiveness of an inactivated virus-based SARS-CoV-2 vaccine, BBV152, in India: a test-negative, case-control study. Lancet Infect Dis. 2022 Mar;22(3):349-56. Click Here
5. Kant R, Dwivedi G, Zaman K, Sahay RR, Sapkal G, Kaushal H, et al. Immunogenicity and safety of a heterologous prime-boost COVID-19 vaccine schedule: ChAdOx1 vaccine Covishield followed by BBV152 Covaxin. J Travel Med. 2021 Oct 15;taab166. Click Here
6. Vikkurthi R, Ansari A, Pai AR, Jha SN, Sachan S, Pandit S, et al. Inactivated virus vaccine BBV152/Covaxin elicits robust cellular immune memory to SARS-CoV-2 and variants of concern [Internet]. Infectious Diseases (except HIV/AIDS); 2021 Nov [cited 2022 Feb 25]. Available from: http://medrxiv.org/lookup/doi/10.1101/2021.11.14.21266294 Click Here
7. Kumar NP, Banurekha VV, C. P. GK, Nancy A, Padmapriyadarsini C, Mary AS, et al. Prime-Boost Vaccination With Covaxin/BBV152 Induces Heightened Systemic Cytokine and Chemokine Responses. Front Immunol. 2021 Oct 15;12:752397. Click Here
8. Malhotra S, Mani K, Lodha R, Bakhshi S, Mathur VP, Gupta P, et al. SARS-CoV-2 Reinfection Rate and Estimated Effectiveness of the Inactivated Whole Virion Vaccine BBV152 Against Reinfection Among Health Care Workers in New Delhi, India. JAMA Netw Open. 2022 Jan 4;5(1):e2142210-e2142210. Click Here
9. Parai D, Choudhary HR, Dash GC, Sahoo SK, Pattnaik M, Rout UK, et al. Single-dose of BBV-152 and AZD1222 increases antibodies against spike glycoprotein among healthcare workers recovered from SARS-CoV-2 infection. Travel Med Infect Dis. 2021;44:102170. Click Here
1. Bhandari N, Sharma P, Taneja S, Kumar T, Rongsen-Chandola T, Appaiahgari MB, et al. A Dose-Escalation Safety and Immunogenicity Study of Live Attenuated Oral Rotavirus Vaccine 116E in Infants: A Randomized, Double-Blind, Placebo-Controlled Trial. J INFECT DIS. 2009 Aug;200(3):421-9. Click Here
2. Ella R, Bobba R, Muralidhar S, Babji S, Vadrevu KM, Bhan MK. A Phase 4, multicentre, randomized, single-blind clinical trial to evaluate the immunogenicity of the live, attenuated, oral rotavirus vaccine (116E), ROTAVAC®, administered simultaneously with or without the buffering agent in healthy infants in India. Hum Vaccin Immunother. 2018 Apr 12;14(7):1791-9. Click Here
3. A randomized, open-labelled, non-inferiority phase 4 clinical trial to evaluate the immunogenicity and safety of the live, attenuated, oral rotavirus vaccine, ROTAVAC® in comparison with a licensed rotavirus vaccine in healthy infants | Elsevier Enhanced Reader [Internet]. [cited 2022 Feb 25]. Click Here
4. Characterization of rotavirus strains from newborns in New Delhi, India [Internet]. [cited 2022 Feb 25]. Click Here
5. Complete genome sequence analysis of candidate human rotavirus vaccine strains RV3 and 116E | Elsevier Enhanced Reader [Internet]. [cited 2022 Feb 25]. Click Here
6. Glass RI, Bhan MK, Ray P, Bahl R, Parashar UD, Greenberg H, et al. Development of Candidate Rotavirus Vaccines Derived from Neonatal Strains in India. J INFECT DIS. 2005 Sep;192(s1):S30-5 Click Here
7. Praharaj I, Platts-Mills JA, Taneja S, Antony K, Yuhas K, Flores J, et al. Diarrheal Etiology and Impact of Coinfections on Rotavirus Vaccine Efficacy Estimates in a Clinical Trial of a Monovalent Human–Bovine (116E) Oral Rotavirus Vaccine, Rotavac, India. Clinical Infectious Diseases. 2019 Jul 2;69(2):243-50 Click Here
8. Efficacy of a monovalent human-bovine (116E) rotavirus vaccine in Indian children in the second year of life | Elsevier Enhanced Reader [Internet]. [cited 2022 Feb 25]. Click Here
9. Bhandari N, Rongsen-Chandola T, Bavdekar A, John J, Antony K, Taneja S, et al. Efficacy of a Monovalent Human-Bovine (116E) Rotavirus Vaccine in Indian Infants: A Randomised Double Blind Placebo Controlled Trial. Lancet. 2014 Jun 21;383(9935):2136-43. Click Here
10. Ramani S, Stewart CJ, Laucirica DR, Ajami NJ, Robertson B, Autran CA, et al. Human milk oligosaccharides, milk microbiome and infant gut microbiome modulate neonatal rotavirus infection. Nat Commun. 2018 Nov 27;9:5010. Click Here
11. Immunogenicity and safety of two monovalent rotavirus vaccines, ROTAVAC® and ROTAVAC 5D® in Zambian infants | Elsevier Enhanced Reader [Internet]. [cited 2022 Feb 25]. Click Here
12. Hai NM, Dung ND, Pho DC, Son VT, Hoan VN, Dan PT, et al. Immunogenicity, safety and reactogenicity of ROTAVAC® in healthy infants aged 6–8 weeks in Vietnam. Vaccine. 2021 Feb 12;39(7):1140-7. Click Here
13. Debellut F, Jaber S, Bouzya Y, Sabbah J, Barham M, Abu-Awwad F, et al. Introduction of rotavirus vaccination in Palestine: An evaluation of the costs, impact, and cost-effectiveness of ROTARIX and ROTAVAC. PLoS One. 2020 Feb 5;15(2):e0228506. Click Here
14. Reddy SN, Nair NP, Tate JE, Thiyagarajan V, Giri S, Praharaj I, et al. Intussusception after Rotavirus Vaccine Introduction in India. N Engl J Med. 2020 Nov 12;383(20):1932-40. Click Here
15. Das MK, Arora NK, Bonhoeffer J, Zuber PLF, Maure CG. Intussusception in Young Children: Protocol for Multisite Hospital Sentinel Surveillance in India. Methods Protoc. 2018 Mar 22;1(2):11. Click Here
16. INCLEN Intussusception Surveillance Network Study Group. Risk of intussusception after monovalent rotavirus vaccine (Rotavac) in Indian infants: A self-controlled case series analysis. Vaccine. 2020/09/21 ed. 2021 Jan 3;39(1):78-84. Click Here
17. Chandola TR, Taneja S, Goyal N, Antony K, Bhatia K, More D, et al. ROTAVAC® does not interfere with the immune response to childhood vaccines in Indian infants: A randomized placebo controlled trial. Heliyon. 2017 May;3(5):e00302. Click Here
18. Bhandari N, Sharma P, Glass RI, Ray P, Greenberg H, Taneja S, et al. Safety and immunogenicity of two live attenuated human rotavirus vaccine candidates, 116E and I321, in infants: Results of a randomised controlled trial. Vaccine. 2006 Jul 26;24(31):5817-23. Click Here
19. Bhan MK, Glass RI, Ella KM, Bhandari N, Boslego J, Greenberg HB, et al. Team science and the creation of a novel rotavirus vaccine in India: a new framework for vaccine development. The Lancet. 2014 Jun 21;383(9935):2180-3. Click Here
20. Kumar D, Beach NM, Meng X-J, Hegde NR. Use of PCR-based assays for the detection of the adventitious agent porcine circovirus type 1 (PCV1) in vaccines, and for confirming the identity of cell substrates and viruses used in vaccine production. Journal of Virological Methods. 2012 Jan 1;179(1):201-11. Click Here
21. Intussusception in Young Children: Protocol for Multisite Hospital Sentinel Surveillance in India. Methods Protoc. 2018, 1(2), 11. Click Here
22. Pecenka C, Debellut F, Bar-Zeev N, Anwari P, Nonvignon J, Shamsuzzaman M, et al. Re-evaluating the cost and cost-effectiveness of rotavirus vaccination in Bangladesh, Ghana, and Malawi: A comparison of three rotavirus vaccines. Vaccine. 2018 Nov 26;36(49):7472–8. Click Here
23. 3. Lusvan ME, Debellut F, Clark A, Demberelsuren S, Otgonbayar D, Batjargal T, et al. Projected impact, cost-effectiveness, and budget implications of rotavirus vaccination in Mongolia. Vaccine. 2019 Feb 4;37(6):798–807. Click Here
24. Rennert W, Hindiyeh M, Allahham M, Mercer LD, Hamad KI, Ghuneim NI, et al. Introducing ROTAVAC® to the occupied Palestinian Territories: Impact on diarrhea incidence, rotavirus prevalence and genotype composition. Vaccine. 2023 Jan 23;41(4):945–54. Click Here
25. Debellut F, Tang K, Clark A, Pecenka C, Assao B, Guindo O, et al. Impact and cost-effectiveness of rotavirus vaccination in Niger: a modelling study evaluating alternative rotavirus vaccines. BMJ Open. 2022 Oct 5;12(10):e061673. Click Here
1. Sabitha P, Prabha Adhikari MR, Chowdary A, Prabhu M, Soofi M, Shetty M, et al. Comparison of the immunogenicity and safety of two different brands of Salmonella typhi Vi capsular polysaccharide vaccine. Indian J Med Sci. 2004 Apr;58(4):141-9. Click Here
1. Venkatesan R, Kumar A, Biotech B. A challenge study to assess the protective efficacy of typhoid Vi-Polysaccharide-protein conjugate vaccine in laboratory animals. undefined [Internet]. 2011 [cited 2022 Feb 25]; Click Here
2. Reddy R, Reddy B, Sarangi V, Reddy S, Ella R, Vadrevu KM. A multi-centre, post-marketing surveillance study of Vi polysaccharide-tetanus toxoid conjugate vaccine (Typbar TCV®) in India. Human Vaccines & Immunotherapeutics. 2021 Jul 9;1-7. Click Here
3. Gao F, Lockyer K, Logan A, Davis S, Bolgiano B, Rijpkema S, et al. Evidence of Extended Thermo-Stability of Typhoid Polysaccharide Conjugate Vaccines. Microorganisms [Internet]. 2021;9(8). Click Here
4. Persisting antibody responses to Vi polysaccharide tetanus toxoid conjugate (Typbar TCV®) vaccine up to 7 years following primary vaccination of children ≤ 2 years of age with, or without, a booster vaccination | Elsevier Enhanced Reader [Internet]. 2021 [cited 2021 Oct 19]. Click Here
5. Mohan VK, Varanasi V, Singh A, Pasetti MF, Levine MM, Venkatesan R, et al. Safety and Immunogenicity of a Vi Polysaccharide-Tetanus Toxoid Conjugate Vaccine (Typbar-TCV®) in Healthy Infants, Children, and Adults in Typhoid Endemic Areas: A Multicenter, 2-Cohort, Open-Label, Double-Blind, Randomized Controlled Phase 3 Study. Clin Infect Dis. 2015 Aug 1;61(3):393-402. Click Here
6. Sabitha P, Prabha Adhikari MR, Chowdary A, Prabhu M, Soofi M, Shetty M, Kamath A, Lokaranjan SS, Bangera SS. Comparison of the immunogenicity and safety of two different brands of Salmonella typhi Vi capsular polysaccharide vaccine. Indian J Med Sci. 2004 Apr;58(4):141-9. PMID: 15122049. Click Here
7. Baliban SM, Allen JC, Curtis B, Amin MN, Lees A, Rao RN, Naidu G, Venkatesan R, Rao DY, Mohan VK, Ella KM, Levine MM, Simon R. Immunogenicity and Induction of Functional Antibodies in Rabbits Immunized with a Trivalent Typhoid-Invasive Nontyphoidal Salmonella Glycoconjugate Formulation. Molecules. 2018 Jul 17;23(7):1749. doi: 10.3390/molecules23071749. PMID: 30018230; PMCID: PMC6099966. Click Here
1. Adverse events following immunization with typhoid conjugate vaccine in an outbreak setting in Hyderabad, Pakistan | Elsevier Enhanced Reader [Internet]. [cited 2022 Feb 25]. Click Here
2. Yousafzai MT, Qamar FN, Shakoor S, Saleem K, Lohana H, Karim S, et al. Ceftriaxone-resistant Salmonella Typhi Outbreak in Hyderabad City of Sindh, Pakistan: High Time for the Introduction of Typhoid Conjugate Vaccine. Clinical Infectious Diseases. 2019 Feb 15;68(Supplement_1):S16-21. Click Here
3. Lee EY, Park JY, Kim DR, Song M, Sahastrabuddhe S, Kim H, et al. Comparison of anti-Vi IgG responses between two clinical studies of typhoid Vi conjugate vaccines (Vi-DT vs Vi-TT). Darton TC, editor. PLoS Negl Trop Dis. 2020 Mar 23;14(3):e0008171. Click Here
4. Yousafzai MT, Karim S, Qureshi S, Kazi M, Memon H, Junejo A, et al. Effectiveness of typhoid conjugate vaccine against culture-confirmed Salmonella enterica serotype Typhi in an extensively drug-resistant outbreak setting of Hyderabad, Pakistan: a cohort study. The Lancet Global Health. 2021 Aug;9(8):e1154-62. Click Here
5. Jin C, Gibani MM, Moore M, Juel HB, Jones E, Meiring J, et al. Efficacy and immunogenicity of a Vi-tetanus toxoid conjugate vaccine in the prevention of typhoid fever using a controlled human infection model of Salmonella Typhi: a randomised controlled, phase 2b trial. The Lancet. 2017 Dec;390(10111):2472-80. Click Here
6. Efficacy of a monovalent human-bovine (116E) rotavirus vaccine in Indian infants: a randomised, double-blind, placebo-controlled trial - The Lancet [Internet]. [cited 2022 Feb 25]. Click Here
7. Shakya M, Voysey M, Theiss-Nyland K, Colin-Jones R, Pant D, Adhikari A, et al. Efficacy of typhoid conjugate vaccine in Nepal: final results of a phase 3, randomised, controlled trial. The Lancet Global Health. 2021 Nov;9(11):e1561-8. Click Here
8. Establishment of the first International Standard for human anti-typhoid capsular Vi polysaccharide IgG | Elsevier Enhanced Reader [Internet]. [cited 2022 Feb 25]. Click Here
9. Longley AT, Date K, Luby SP, Bhatnagar P, Bentsi-Enchill AD, Goyal V, et al. Evaluation of Vaccine Safety After the First Public Sector Introduction of Typhoid Conjugate Vaccine—Navi Mumbai, India, 2018. Clinical Infectious Diseases. 2021 Aug 16;73(4):e927-33. Click Here
10. Shakya M, Colin-Jones R, Theiss-Nyland K, Voysey M, Pant D, Smith N, et al. Phase 3 Efficacy Analysis of a Typhoid Conjugate Vaccine Trial in Nepal. N Engl J Med. 2019 Dec 5;381(23):2209-18. Click Here
11. Shakya M, Neuzil KM, Pollard AJ. Prospects of Future Typhoid and Paratyphoid Vaccines in Endemic Countries. The Journal of Infectious Diseases. 2021 Dec 20;224(Supplement_7):S770-4. Click Here
12. Qadri F, Khanam F, Liu X, Theiss-Nyland K, Biswas PK, Bhuiyan AI, et al. Protection by vaccination of children against typhoid fever with a Vi-tetanus toxoid conjugate vaccine in urban Bangladesh: a cluster-randomised trial. The Lancet. 2021 Aug;398(10301):675-84. Click Here
13. Patel PD, Patel P, Liang Y, Meiring JE, Misiri T, Mwakiseghile F, et al. Safety and Efficacy of a Typhoid Conjugate Vaccine in Malawian Children. N Engl J Med. 2021 Sep 16;385(12):1104-15. Click Here
14. Sirima SB, Ouedraogo A, Barry N, Siribie M, Tiono AB, Nébié I, et al. Safety and immunogenicity of co-administration of meningococcal type A and measles–rubella vaccines with typhoid conjugate vaccine in children aged 15–23 months in Burkina Faso. International Journal of Infectious Diseases. 2021 Jan;102:517-23. Click Here
15. Voysey M, Pollard AJ. Seroefficacy of Vi Polysaccharide-Tetanus Toxoid Typhoid Conjugate Vaccine (Typbar TCV). Clinical Infectious Diseases. 2018 Jun 18;67(1):18-24. Click Here
16. Qamar FN, Batool R, Qureshi S, Ali M, Sadaf T, Mehmood J, et al. Strategies to Improve Coverage of Typhoid Conjugate Vaccine (TCV) Immunization Campaign in Karachi, Pakistan. Vaccines [Internet]. 2020;8(4). Available from: https://www.mdpi.com/2076-393X/8/4/697 Click Here
17. Sirima SB, Ouedraogo A, Barry N, Siribie M, Tiono AB, Nébié I, et al. Safety and immunogenicity of co-administration of meningococcal type A and measles-rubella vaccines with typhoid conjugate vaccine in children aged 15-23 months in Burkina Faso. Int J Infect Dis. 2020/11/08 ed. 2021 Jan;102:517-23 Click Here
1. Singh A, Mitra M, Sampath G, Venugopal P, Rao JV, Krishnamurthy B, et al. A Japanese Encephalitis Vaccine From India Induces Durable and Cross-protective Immunity Against Temporally and Spatially Wide-ranging Global Field Strains. J Infect Dis. 2015 Sep 1;212(5):715-25. Click Here
2. Hegde NR, Gore MM. Japanese encephalitis vaccines: Immunogenicity, protective efficacy, effectiveness, and impact on the burden of disease. Hum Vaccin Immunother. 2017 Feb 22;13(6):1320-37. Click Here
3. Vadrevu KM, Potula V, Khalatkar V, Mahantshetty NS, Shah A, Ella R. Persistence of Immune Responses With an Inactivated Japanese Encephalitis Single-Dose Vaccine, JENVAC and Interchangeability With a Live-Attenuated Vaccine. J Infect Dis. 2019 Dec 20;222(9):1478-87. Click Here
1. Ravish HS, Sudarshan MK, Madhusudana SN, Annadani RR, Narayana DHA, Belludi AY, et al. Assessing safety and immunogenicity of post-exposure prophylaxis following interchangeability of rabies vaccines in humans. Hum Vaccin Immunother. 2014 Feb 28;10(5):1354–8. Click Here
2. Sampath G, Madhusudana SN, Sudarshan MK, Ashwathnarayana DH, Mahendra BJ, Ullas TP, et al. Immunogenicity and safety study of Indirab: A Vero cell based chromatographically purified human rabies vaccine. Vaccine. 2010 May 28;28(24):4086–90. Click Here
1. Hegde NR, Kumar D, Rao PP, Kumari PK, Kaushik Y, Ravikrishnan R, et al. Development and preclinical testing of HNVAC, a cell culture-based H1N1 pandemic influenza vaccine from India. Vaccine. 2014 Jun 17;32(29):3636–43. Click Here
2. Basavaraj VH, Sampath G, Hegde NR, Mohan VK, Ella KM. Evaluation of safety and immunogenicity of HNVAC, an MDCK-based H1N1 pandemic influenza vaccine, in Phase I single centre and Phase II/III multi-centre, double-blind, randomized, placebo-controlled, parallel assignment studies. Vaccine. 2014 Jul 31;32(35):4592–7. Click Here
1. Lakshmi G, Reddy PS, Kumar KR, Bhavani NV, Dayanand M. Study of the safety, immunogenicity and seroconversion of a hepatitis-B vaccine in malnourished children of India. Vaccine. 2000 Apr 3;18(19):2009–14. Click Here
1. A Phase III Study to Evaluate the Safety and Efficacy of Recombinant Human Epidermal Growth Factor (REGEN-DTM 150) in Healing Dia. Wounds [Internet]. 2006 Jul 1 [cited 2022 Feb 25] Click Here
2. Efficacy of Recombinant Human Epidermal Growth Factor (Regen-D 150) in Healing Diabetic Foot Ulcers: A Hospital-Based Randomized Controlled Trial - Vijay Viswanathan, Udyama Juttada, Mary Babu, 2020 [Internet]. [cited 2022 Feb 25]. Click Here
3. Recombinant human epidermal growth factor (REGEN-DTM 150): Effect on healing of diabetic foot ulcers - Diabetes Research and Clinical Practice [Internet]. [cited 2022 Feb 25]. Click Here
4. Chairmandurai AR, Kanappa SV, Vadrevu KM, Putcha UK, Venkatesan V. Recombinant Human Epidermal Growth Factor Alleviates Gastric Antral Ulcer Induced by Naproxen: A Non-steroidal Anti Inflammatory Drug. Gastroenterology Res. 2010 Jun;3(3):125-33. Click Here